Hardness of computing clique number and chromatic number for Cayley graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness of computing clique number and chromatic number for Cayley graphs

Computing the clique number and chromatic number of a general graph are well-known to be NP-Hard problems. Codenotti et al. (Bruno Codenotti, Ivan Gerace, and Sebastiano Vigna. Hardness results and spectral techniques for combinatorial problems on circulant graphs. Linear Algebra Appl., 285(1-3): 123–142, 1998) showed that computing the clique number and chromatic number are still NP-Hard probl...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The chromatic number of random Cayley graphs

We consider the typical behaviour of the chromatic number of a random Cayley graph of a given group of order n with respect to a randomly chosen set of size k ≤ n/2. This behaviour depends on the group: for some groups it is typically 2 for all k < 0.99 log2 n, whereas for some other groups it grows whenever k grows. The results obtained include a proof that for any large prime p, and any 1 ≤ k...

متن کامل

Fractional chromatic number and circular chromatic number for distance graphs with large clique size

Let Z be the set of all integers and M a set of positive integers. The distance graph G(Z,M) generated by M is the graph with vertex set Z and in which i and j are adjacent whenever |i − j| ∈ M . Supported in part by the National Science Foundation under grant DMS 9805945. Supported in part by the National Science Council, R. O. C., under grant NSC892115-M-110-012.

متن کامل

Packing chromatic number versus chromatic and clique number

The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2017

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2016.12.005